69 research outputs found

    Persistence of Anderson localization in Schr\"odinger operators with decaying random potentials

    Full text link
    We show persistence of both Anderson and dynamical localization in Schr\"odinger operators with non-positive (attractive) random decaying potential. We consider an Anderson-type Schr\"odinger operator with a non-positive ergodic random potential, and multiply the random potential by a decaying envelope function. If the envelope function decays slower than ∣x∣−2|x|^{-2} at infinity, we prove that the operator has infinitely many eigenvalues below zero. For envelopes decaying as ∣x∣−α|x|^{-\alpha} at infinity, we determine the number of bound states below a given energy E<0E<0, asymptotically as α↓0\alpha\downarrow 0. To show that bound states located at the bottom of the spectrum are related to the phenomenon of Anderson localization in the corresponding ergodic model, we prove: (a) these states are exponentially localized with a localization length that is uniform in the decay exponent α\alpha; (b)~ dynamical localization holds uniformly in α\alpha

    New characterizations of the region of complete localization for random Schr\"odinger operators

    Full text link
    We study the region of complete localization in a class of random operators which includes random Schr\"odinger operators with Anderson-type potentials and classical wave operators in random media, as well as the Anderson tight-binding model. We establish new characterizations or criteria for this region of complete localization, given either by the decay of eigenfunction correlations or by the decay of Fermi projections. (These are necessary and sufficient conditions for the random operator to exhibit complete localization in this energy region.) Using the first type of characterization we prove that in the region of complete localization the random operator has eigenvalues with finite multiplicity

    Characterization of the Anderson metal-insulator transition for non ergodic operators and application

    Full text link
    We study the Anderson metal-insulator transition for non ergodic random Schr\"odinger operators in both annealed and quenched regimes, based on a dynamical approach of localization, improving known results for ergodic operators into this more general setting. In the procedure, we reformulate the Bootstrap Multiscale Analysis of Germinet and Klein to fit the non ergodic setting. We obtain uniform Wegner Estimates needed to perform this adapted Multiscale Analysis in the case of Delone-Anderson type potentials, that is, Anderson potentials modeling aperiodic solids, where the impurities lie on a Delone set rather than a lattice, yielding a break of ergodicity. As an application we study the Landau operator with a Delone-Anderson potential and show the existence of a mobility edge between regions of dynamical localization and dynamical delocalization.Comment: 36 pages, 1 figure. Changes in v2: corrected typos, Theorem 5.1 slightly modifie

    Edge Currents for Quantum Hall Systems, I. One-Edge, Unbounded Geometries

    Full text link
    Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. The electron motion is confined to unbounded subsets of the plane by confining potential barriers. The edges of the confining potential barrier create edge currents. In this, the first of two papers, we prove explicit lower bounds on the edge currents associated with one-edge, unbounded geometries formed by various confining potentials. This work extends some known results that we review. The edge currents are carried by states with energy localized between any two Landau levels. These one-edge geometries describe the electron confined to certain unbounded regions in the plane obtained by deforming half-plane regions. We prove that the currents are stable under various potential perturbations, provided the perturbations are suitably small relative to the magnetic field strength, including perturbations by random potentials. For these cases of one-edge geometries, the existence of, and the estimates on, the edge currents imply that the corresponding Hamiltonian has intervals of absolutely continuous spectrum. In the second paper of this series, we consider the edge currents associated with two-edge geometries describing bounded, cylinder-like regions, and unbounded, strip-like, regions.Comment: 68 page

    Localization for a matrix-valued Anderson model

    Full text link
    We study localization properties for a class of one-dimensional, matrix-valued, continuous, random Schr\"odinger operators, acting on L^2(\R)\otimes \C^N, for arbitrary N≥1N\geq 1. We prove that, under suitable assumptions on the F\"urstenberg group of these operators, valid on an interval I⊂RI\subset \R, they exhibit localization properties on II, both in the spectral and dynamical sense. After looking at the regularity properties of the Lyapunov exponents and of the integrated density of states, we prove a Wegner estimate and apply a multiscale analysis scheme to prove localization for these operators. We also study an example in this class of operators, for which we can prove the required assumptions on the F\"urstenberg group. This group being the one generated by the transfer matrices, we can use, to prove these assumptions, an algebraic result on generating dense Lie subgroups in semisimple real connected Lie groups, due to Breuillard and Gelander. The algebraic methods used here allow us to handle with singular distributions of the random parameters

    Spectral and Localization Properties for the One-Dimensional Bernoulli Discrete Dirac Operator

    Full text link
    A 1D Dirac tight-binding model is considered and it is shown that its nonrelativistic limit is the 1D discrete Schr?odinger model. For random Bernoulli potentials taking two values (without correlations), for typical realizations and for all values of the mass, it is shown that its spectrum is pure point, whereas the zero mass case presents dynamical delocalization for specific values of the energy. The massive case presents dynamical localization (excluding some particular values of the energy). Finally, for general potentials the dynamical moments for distinct masses are compared, especially the massless and massive Bernoulli cases.Comment: no figure; 24 pages; to appear in Journal of Mathematical Physic

    Localization Bounds for Multiparticle Systems

    Full text link
    We consider the spectral and dynamical properties of quantum systems of nn particles on the lattice Zd\Z^d, of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all nn there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the nn-particle Green function, and related bounds on the eigenfunction correlators
    • …
    corecore